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Abstract
Purpose of Review Cannabis use disorder (CUD) is highly prevalent. Psychotherapeutic treatment alone is not adequately
effective, with few individuals achieving abstinence. Pharmacotherapeutic supplementation may improve efficacy, and the
endocannabinoid system presents a target specifically dysregulated by heavy cannabis use. This review compiles current liter-
ature evaluating endocannabinoid modulation as a treatment strategy for CUD, with implications for future research.
Recent Findings Cannabinoid receptor agonists have been found to reduce cannabis withdrawal symptoms without a notable
effect on relapse, and antagonists can produce severe psychiatric symptoms. Fatty acid amide hydrolase inhibitors and
cannabidiol demonstrate the most promise in treating CUD thus far, but research with these compounds is still preliminary.
Summary Components of the endocannabinoid system may serve as unique treatment targets with differential efficacy for the
treatment of cannabis use disorder as a whole. Further research is needed exploring novel methods for targeting endocannabinoid
dysfunction in CUD.
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Introduction

Cannabis is the most commonly used illicit drug in the USA,
and nearly one-fifth of individuals that have used cannabis in
the past year meet DSM-5 criteria for cannabis use disorder
(CUD) [1, 2•]. Though risk perceptions associated with canna-
bis use are currently in decline [3], treatment service utilization
for individuals that primarily use cannabis is only third behind
alcohol and opiates [4], and the likelihood of treatment utiliza-
tion increases exponentially with CUD severity [5, 6]. Despite
this demand, treatment options for CUD are extremely limited.
Psychotherapeutic methods, such as motivational enhancement
therapy and contingency management, are at best moderately

efficacious [7]. Combined psychotherapy and pharmacotherapy
may produce superior outcomes, but there is no
pharmacotherapeutic intervention for CUD that has been ap-
proved by the US Food and Drug Administration (FDA) [7].

Evaluated pharmacotherapeutics have spanned a wide va-
riety of drug classes targeting an array of neural systems [7].
The endocannabinoid system, however, presents a systemic
target that may have superior efficacy in the treatment of
CUD, though its full potential has not yet been elucidated.
The aim of this review was to synthesize available data
pertaining to the endocannabinoid system and its modulation
as a therapeutic for CUD, with the goal of informing future
pharmacotherapeutic research. Considerations to be made
when transitioning these medications from the laboratory to
the clinic are also discussed.

The Endocannabinoid System

The primary psychoactive constituent of cannabis, Δ9-tetra-
hydrocannabinol (THC), produces its hallmark effects via par-
tial agonism of the cannabinoid type 1 receptor (CB1) in the
CNS [8]. CB1 is part of an endogenous cannabinoid system
(ECS) that extends from the CNS to the periphery [9]. This
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ECS is composed of two G protein-coupled receptors (CB1
and CB2) and their primary endogenous ligands, N-
a r a c h i d o n o y l e t h a n o l a m i d e ( A E A ) a n d 2 -
arachidonoylglycerol (2-AG). AEA and 2-AG act primarily
via retrograde signaling in the CNS: they are produced on-
demand by postsynaptic neurons before traveling backward
across the synapse to bind to presynaptic CB1 and CB2 re-
ceptors [8]. By agonizing these receptors, much like THC,
AEA and 2-AG inhibit further release of neurotransmitter
from the presynaptic cell [8]. Myriad enzymes involved in
the synthesis, degradation, and transport of AEA and 2-AG
also comprise the ECS. For the purposes of this review, the
most noteworthy of these enzymes are fatty acid amide hydro-
lase (FAAH) and monoacylglycerol lipase (MAGL), which
act as the primary degradative enzymes for AEA and 2-AG,
respectively [10] (see Fig. 1 for a visual of endocannabinoid
signaling and degradation).

The ECS is involved in a wide variety of internal processes
that explain the breadth of effects associated with cannabis use
and disorder. As with most drugs of abuse, cannabis consump-
tion is associated with increased dopamine release within neu-
ral reward pathways, which occurs as a consequence of THC-
CB1 receptor binding [11–13]. The ECS also appears to have
a role in maintaining homeostasis, having been implicated in
feeding [14–17], sleep [18–20], emotional regulation [21–25],
and modulation of the stress response [26–28, 29•].
Accordingly, anorexia, sleep disturbance, and negative mood
are all symptoms of cannabis withdrawal [30], and stress-
coping is a commonly cited justification for both initiation
and maintenance of cannabis use [31, 32]. At the molecular
level, heavy cannabis use is associated with ECS

dysregulation that includes CB1 downregulation [33–35]
and reduced levels of FAAH in the brain [36, 37]. The effects
of heavy cannabis use on AEA and 2-AG are presently
unclear.

Taken together, it would seem that normalizing
endocannabinoid signaling that has been disrupted by heavy
cannabis use could serve as an effective and specific therapeu-
tic target for CUD. Indeed, this treatment strategy follows a
precedent first established in the treatment of opioid and nic-
otine use disorders, that of agonist replacement therapy. The
ECS also presents additional druggable targets for CUD in the
form of biosynthetic and degradative enzymes, for which ac-
tivity can be either facilitated or inhibited to indirectly modu-
late endogenous cannabinoid levels. Enzymatic manipulation
may produce similar outcomes to an agonist replacement ther-
apy, but with lower abuse liability and reduced intoxication.

While there are many unique pharmacotherapeutic targets
available within the context of the ECS, a more conventional
approach, the exogenous antagonist, is presently nonviable.
One such antagonist, the CB1 inverse agonist rimonabant,
showed preliminary efficacy in attenuating cannabis use pre-
clinically and in humans [38–40], but research efforts halted
following demonstration of adverse psychiatric side effects,
namely, increased prevalence of anxiety, depression, and
suicidality [41]. Neutral antagonists, which merely block ac-
tivity at a given receptor rather than produce effects opposite
to those of an agonist, may present as equally effective treat-
ment options [40] with a more favorable side effect profile
[42–44]. However, research in humans is limited and a direct
effect on CUD has yet to be assessed. Further, it is possible
that this class of drugs would still have some degree of nega-
tive psychiatric effects, as chronic neutral antagonism would
still preclude endogenous cannabinoid signaling necessary for
mood regulation. This is an important consideration, as pres-
ence of such side effects might further disincentivize treatment
adherence in this already difficult to treat population, even if
they are less severe than those produced by inverse agonists.

Dronabinol

Dronabinol, an orally bioavailable formulation of THC, is
FDA-approved for the prophylaxis of chemotherapy-induced
nausea and vomiting and for use in the stimulation of appetite
and prevention of weight loss in patients with acquired immu-
nodeficiency syndrome (AIDS) [45]. As a direct CB1 agonist,
there is a substantial theoretical basis to support its utility as a
treatment of CUD, and multiple studies have explored its po-
tential as an intervention for cannabis withdrawal specifically.

Dronabinol has been demonstrated to attenuate cannabis
withdrawal symptoms in both inpatient and outpatient labora-
tory settings [46, 47]. Dronabinol given at a dose of 10mg five
times daily in a laboratory environment decreased cannabis

Fig. 1 Illustration of endocannabinoid retrograde signaling in the CNS
and hydrolysis by the degradative enzymes FAAH and MAGL.
Figure created using Biorender.com
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craving and withdrawal symptoms while producing no intox-
ication [46]. An outpatient evaluation in non-treatment seek-
ing, daily cannabis users also showed a reduction in withdraw-
al symptoms with dronabinol at doses of 10 or 30 mg three
times daily compared with placebo treatment [47]. A greater
reduction in withdrawal symptoms was noted with the 90 mg/
day dose compared with the 30 mg/day dose. However, some
signs of cannabis-like intoxication were associated with the
higher dose, as were some drug effects such as euphoria and
drug-liking. A within-subject crossover study of short-term
dronabinol (0, 30, 60, and 120 mg/day for five consecutive
days) also found a dose-dependent suppression of cannabis
withdrawal, without decrements in cognitive performance
[48]. No impact of dronabinol on the subjective effects of
smoked cannabis was observed.

Laboratory studies investigating whether dronabinol alters
cannabis self-administration have had mixed results. Hart and
colleagues [49] found no effect of dronabinol 40–80 mg/day
on cannabis self-administration. In a subsequent trial,
dronabinol (60 mg/day) did not decrease cannabis self-
administration alone, though a reduction was noted when
dronabinol was administered in combination with the adren-
ergic agonist lofexidine [50]. In contrast, a recent trial com-
paring 12 days of high-dose dronabinol (180–240 mg/day),
120 mg/day dronabinol, and placebo found reduced cannabis
self-administration in both dronabinol conditions [51]. These
results suggest higher dronabinol doses may be needed to
impact cannabis use behavior, perhaps due to its limited
bioavailability.

Based on the above promising data in cannabis withdrawal,
as well as the established utility of agonist substitution therapy
in other use disorders, dronabinol was evaluated in a large
randomized, placebo-controlled trial in which cannabis-
dependent adults received either dronabinol (40 mg/day) or
placebo over a 12-week periodwith concomitant psychosocial
treatment [52]. Both treatment groups reported a reduction in
cannabis use during the trial. Dronabinol was shown to im-
prove retention in the trial and to reduce withdrawal symp-
toms; however, there was no effect of dronabinol on cannabis
use. Negative findings were also reported in a large, placebo-
controlled trial of concurrent dronabinol (60 mg/day) and
lofexidine (1.8 mg/day), with no treatment differences ob-
served in cannabis abstinence, withdrawal symptoms, or treat-
ment retention [53]. Together, these trials suggest limited po-
tential of dronabinol for cannabis abstinence promotion.

Nabilone

Nabilone (Cesamet™) is a synthetic cannabinoid that is FDA-
approved to treat nausea associated with cancer chemotherapy
[54]. Like dronabinol, nabilone is an oral medication that acts
as an agonist at CB1 and CB2 [55] and produces similar

interoceptive effects to THC in individuals that regularly use
cannabis [56, 57]. As such, nabilone represents a potential
agonist replacement therapy for CUD. Notably, nabilone ap-
pears to have a lower abuse liability relative to smoked can-
nabis [58, 59], though this may be dose-dependent [60] and is
likely in large part attributable to the difference in route of
administration.

Given other similarities to dronabinol, it is unsurprising
that nabilone produces similar effects in the context of canna-
bis dependence, i.e., reduces withdrawal symptoms [61] with-
out promoting abstinence in an outpatient setting [62]. It is
important to note that the dose used in the treatment trial
(2 mg) was substantially lower than that used in the laboratory
by Haney and colleagues [61]. However, higher doses in pre-
vious laboratory studies were associated with substantial in-
creases in “Good Drug Effects”, “Drug Liking”, and “Take
Again” [56, 57, 60]. Thus, it is difficult to reconcile increasing
the dose of nabilone given in an outpatient setting with these
apparent increases in abuse liability. This is further substanti-
ated by the lack of efficacy of dronabinol in promoting absti-
nence from cannabis, given the similarities between these
medications.

A more suitable role for nabilone in the treatment of CUD
may be as an adjunctive pharmacotherapy. A laboratory study
found that daily nabilone and nightly zolpidem improved
sleep and reduced anxiety and irritability during a withdrawal
period [63]. This combination did not produce significant in-
creases in “Drug Liking” or “Take Again” relative to placebo.
Unfortunately, the combination was not directly compared
with nabilone alone, and the addition of zolpidem did not
significantly attenuate sleep-related withdrawal symptoms
moreso than nabilone alone did in a prior study [61], although
the doses of nabilone used herein were slightly lower. It is
therefore difficult to ascertain where these findings fall in a
broader therapeutic context. Similarly, combined nabilone
and varenicline attenuated withdrawal symptoms in individ-
uals that use both cannabis and tobacco without appreciable
effects on a laboratory model of relapse [64]. While in these
cases ineffective, the lack of considerable drug interactions
and continuing attenuation of withdrawal symptoms may be
indicative of a more nuanced role for nabilone in the treatment
of CUD moving forward.

Cannabidiol

Cannabidiol (CBD) has a broad and complex pharmacological
profile, interacting with many classes of receptors, enzymes,
and other targets. Although similar in structure to THC, CBD
binds poorly to CB1 and CB2 [65]. However, CBD still has
pharmacological activity within the ECS: it acts as a negative
allosteric modulator of the CB1 receptor, as well as inhibits
the reuptake and hydrolysis of AEA [66, 67].
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Outcomes from some human laboratory studies suggest
that CBD can block acute adverse pharmacodynamic effects
of THC such as anxiety [68] and memory impairment [69],
leading to speculation that CBD may mitigate the effects of
THC; this “dampening” effect is consistent with activity as a
CB1 negative allosteric modulator. Further, anxiolytic effects
may be attributable to inhibition of AEA hydrolysis, as this is
also a known quality of FAAH inhibitors [29•]. However, a
study comparing acute doses of oral CBD (200, 400, and
800 mg) and placebo in the context of smoked cannabis
among regular cannabis users reported no impact of CBD on
cannabis self-administration, subjective effects, or physiolog-
ic responses [70]. Further, Solowij and colleagues [71] evalu-
ated the impact of vaporized low (4 mg) and high (400 mg)
CBD given in conjunction with THC. Low doses of CBD
enhanced the intoxicating effects of THC, particularly in in-
frequent cannabis users, while high doses of CBD were asso-
ciated with a reduction of intoxicating effects.

Two trials to date have evaluated longer-term oral CBD
administration in cannabis users. An open-label trial evaluated
200 mg daily CBD administration for 10 weeks among 20
frequent cannabis users [72]. Compared with baseline, partic-
ipants reported fewer depressive and psychotic symptoms af-
ter CBD treatment and demonstrated improvement in cogni-
tive measures. Increased euphoria when smoking cannabis
was also reported. Recently, Freeman and colleagues [73••]
published results from a 4-week adaptive trial in which three
doses (200, 400, and 800 mg) of oral CBD were compared
with placebo during a cannabis cessation attempt. Following
an initial treatment phase (n = 48), the 200 mg dose was
deemed inefficacious and the trial continued with the
400 mg, 800 mg, and placebo arms (n = 34). At end of treat-
ment, both doses of CBD were associated with lower THC-
COOH/creatinine ratios and modest reductions in self-report
days per week of cannabis use relative to placebo; however,
treatment effects were not found at follow-up timepoints. Of
note, there was some indication of an inverted-U dose-re-
sponse curve, with the 200 mg dose deemed inefficacious
and marginal indication that the 400 mg dose was superior
to the 800 mg dose. No serious adverse events were noted,
although lower sleep quality was reported among individuals
in the 400 mg group. Limitations of the study include brief
treatment period and insufficient sample sizes to robustly es-
timate effect sizes, making it difficult to fully ascertain the
impact of CBD in promoting abstinence from cannabis.

Nabiximols

Nabiximols is an oromucosal spray composed of THC
(2.7 mg/spray), CBD (2.5 mg/spray), and various terpenoids.
It is approved in the United Kingdom, Canada, and other
countries primarily for the treatment of spasticity related to

multiple sclerosis; it is not currently FDA-approved in the
USA, although registry trials are ongoing.

In regard to CUD, an initial study evaluated a six-day
course of nabiximols (maximum daily dose 86.4 mg THC
and 80 mg CBD) compared with placebo among 51
treatment-seeking cannabis-dependent individuals during an
inpatient admission [74]. Nabiximols reduced cannabis with-
drawal symptoms and improved retention in treatment, but no
medication effect was observed on time to cannabis relapse or
reductions in cannabis use following medication cessation.
Trigo and colleagues [75] evaluated fixed versus self-titrated
doses of nabiximols and placebo for cannabis withdrawal and
craving during one-week abstinence periods in an outpatient
trial. High fixed doses of nabiximols (108 mg THC/100 mg
CBD daily) reduced cannabis withdrawal compared to place-
bo, but did not reduce cannabis craving; limited efficacy was
noted with the lower self-titrated doses.

Two randomized clinical trials have evaluated nabiximols
as a potential treatment for CUD. One 12-week trial compared
a flexible dose of nabiximols (up to 113.4 mg THC/105 mg
cannabidiol daily) with placebo in conjunction with motiva-
tional enhancement and cognitive behavioral therapy in 50
individuals [76]. Nabiximols reduced cannabis craving com-
pared with placebo; however, no significant differences in
cannabis withdrawal or cannabis use were observed.
Recently, a larger trial (n = 128) reported a reduction in self-
reported cannabis using days among individuals receiving
nabiximols relative to placebo both during treatment and at a
three-month follow-up assessment [77•, 78]. No between-
group differences were found in cannabis withdrawal, crav-
ing, or periods of abstinence, nor in health or psychosocial
outcomes. In both trials, nabiximols was well-tolerated, but
treatment retention was low. Nabiximols may have some
promise for the treatment of CUD if findings related to can-
nabis use can be replicated.

FAAH Inhibitors

FAAH inhibitors increase levels of AEA through selective
inhibition of its primary catabolic enzyme [79]. This increased
AEA produces anxiolytic and antidepressant effects [79, 80].
FAAH inhibitors, like exogenous CB1 agonists, have been
shown to alleviate symptoms of cannabis withdrawal in mice
[81] but are distinguished from these drugs by their lack of
readily apparent abuse liability [82–84]. Only one trial has
been completed thus far in cannabis-dependent men, but these
preliminary outcomes are promising [85••]. Men that received
the FAAH inhibitor PF-04457845 not only exhibited attenu-
ated withdrawal symptoms but also self-reported reduced can-
nabis use, which was confirmed by urine toxicology [85••].
Though limited by inclusion of only men and a fairly brief treat-
ment period to truly assess risk of relapse, these findings warrant
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further exploration. Also of note is the lack of serious adverse
events that resulted from chronic treatment with PF-04457845
[85••]. Despite the severe neurological side effects associated
with the FAAH inhibitor BIA 10–2474 [86], this present study
corroborates previous work indicating such side effects are more
likely attributable to BIA 10–2474 itself rather than the class of
FAAH inhibitors as a whole [87]. Nevertheless, strict vigilance
must be maintained until further data are acquired to ensure
safety of study participants moving forward.

Conclusions

Despite the high prevalence of CUD [1], current treatment
options are at best only moderately effective and there is no
FDA-approved pharmacotherapy for its treatment [7]. The
ECS presents an attractive pharmacotherapeutic target, given
its specific dysregulation by heavy cannabis use and the clin-
ical success of agonist replacement therapy for opioid and
nicotine use disorders. The most effective method for
targeting the ECS, however, remains unclear. While CB1 an-
tagonism may effectively reduce cannabis use, severe psychi-
atric side effects preclude its use in a treatment setting, espe-
cially given the high rate of psychiatric comorbidity already
prevalent among individuals with CUD [88]. In contrast, syn-
thetic CB1 agonists, such as dronabinol and nabilone, attenu-
ate withdrawal symptoms during an abstinence period but
have no apparent impact on cannabis use in an outpatient
setting and bear the additional burden of potential abuse lia-
bility. Cannabidiol- and FAAH inhibitor-based treatments ap-
pear efficacious for both reducing cannabis use and curtailing
associated withdrawal symptoms, but research is limited.

Future research should aim to expand on these preliminary
positive outcomes. A large, multisite clinical trial is currently
in progress evaluating the FAAH inhibitor PF-04457845 for
the treatment of CUD (NCT03386487). Surprisingly, there
are currently no randomized clinical trials in progress
assessing cannabidiol for CUD, despite its apparent efficacy
in the more modest treatment trials detailed herein. The ab-
sence of a large-scale randomized clinical trial supporting the
utility of CBD in the treatment of CUD is at odds with its
widespread availability and often-advertised clinical benefit
in the context of addiction. It is imperative that future research
addresses this discrepancy.

Pharmacological interventions for CUD have not yet been
able to reliably demonstrate efficacy in both withdrawal
symptom alleviation and relapse prevention. However, many
of the treatments assessed thus far have been constrained to
direct agonist or antagonist approaches to CB1. These only
scratch the surface of the available drug targets in a complex
endocannabinoid system and appear to be limited in their
therapeutic potential. Unique approaches to targeting the
ECS, such as cannabidiol, FAAH inhibitors, or other

treatments that have not yet advanced to clinical trials (e.g.,
MAGL inhibitors), may prove advantageous over previous
strategies given their distinct pharmacological properties.
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